
LLNL-TR-676678

Surface Triangulation for CSG in
Mercury

D. Engel, M. J. O'Brien

August 26, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Surface Triangulation for CSG in Mercury

Daniel Engel1,2, Matthew O'Brien1

1Lawrence Livermore National Laboratory, 2Georgia Institute of Technology

ABSTRACT

Visualization routines for rendering complicated geometries are very useful for engineers and
scientists who are trying to build 3D prototypes of their designs. A common way to rapidly add
interesting features to a 3D model is through the use of a concept called Constructive Solid Geometry.
CSG uses compositions of the boolean set operations to manipulate basic geometric primitives to form
more complicated objects. The most common boolean operations employed are union, intersection,
and subtraction. Most computer-aided design software packages contain some sort of ability visualize
CSG. The typical workflow for the user is as follows: The user specifies the individual primitive
components, the user arbitrarily combines each of these primitives with boolean operations, the
software generates a CSG tree structure which normally stores these solids implicitly with their
defining equation, the tree is traversed and a general algorithm is applied to render the appropriate
geometry onto the screen. Algorithms for visualizing CSG have been extensively developed for over a
decade. Points sampled from the implicit solids are typically used as input by variations of algorithms
like marching cubes and point-cloud surface reconstruction. Here, we explain a surface triangulation
method from the graphics community that is being used for surface visualization in the framework of
a Monte-Carlo neutron transport code called Mercury.

INTRODUCTION

The CSG object representation is
particularly important for users of the Monte-
Carlo neutron transport code called Mercury. It
allows them to construct complicated geometries
and generate a visual representation of the
objects to guarantee their validity. In Mercury,
users write an input file that includes a CSG
description of how they want to create a
geometry for their simulation. Mercury's parser
passes the main code the necessary information
for it to construct a CSG tree data structure. This
tree serves multiple purposes. Primarily, it is
actually used in the physics simulation for
detecting where in the 3D environment particles
exist at a particular point in time and tracking
them to surfaces. However, for visualization
purposes, the tree is used to gather information
about the final set of objects that should be
rendered.

It is worth noting that for this application,

the primary concern is performing CSG
operations on concave and convex closed
surfaces. Traditionally we use surface rather than
solid to refer to the boundary of these geometric
bodies. Additionally, mesh is used to refer to an
approximate polyhedral representation of a given
geometric surface. Mercury has two general
approaches for solving the CSG problem. The ray
tracer is the most natural in a Monte-Carlo
framework and performs excellently at displaying
the appropriate geometry. However, at this point,
ray tracing suffers from being computationally
expensive and not realistic for real-time
visualization on limited hardware.
Another more interesting approach is mesh
generation based on the CSG specification. Many
of Mercury's current mesh generation methods
for solving the CSG problem involve making
successive approximations to an implicitly
defined series of surfaces. These methods are
accurate, but some leave visual artifacts. These
arise when the surfaces are “not smooth” or have

local points where they are non-differentiable.

PREVIOUS WORK

Ray Tracer

For each pixel, a ray is fired into the scene
from the viewer's perspective. These rays
essentially sample objects in the scene to
determine which object is visible to the viewer.
The material properties of the chosen sampled
object are used to determine the final color for
the pixel and the scene is constructed
appropriately(Figure 1).

Figure 1: A sophisticated implementation of a ray
tracer with many components of the shading
model used.

The obvious downside to this approach is that
upon every frame update, the pixel values have
to be recomputed. Acceleration structures such
as octrees(Figure 2) can be used to enhance this
per frame calculation by spatially decomposing
the scene into geometric regions.

 Figure 2: A visual representation of the octree
data structure.

This helps to reduce the number ray-intersection
tests during the ray trace calculation.

Mixed-Cell

This method begins with specified spatial
grid to begin defining the resulting mesh. It uses
an idea similar to adaptive mesh refinement to
recursively subdivide grid cells to compute a total
volume fraction. The terminating condition is
reached when all nodes of a sub-cell lie in the
same material or the user-specified subdivision
threshold is reached. The volume fraction of
these individual cells are passed to Visit which
performs material interface reconstruction from
the cell volumes. These are used to generate a
final mesh(Figure 3).

 Figure 3: A CSG subtraction generated using the
conformal method with a 100x100x100 grid size.

Numerical Integration

An alternative method for computing
volume fractions of cells is employed in this
method. It's a 2D numerical quadrature rule for
computing the volume fraction of CSG cells in
graphics mesh cells. The user has the option to
select various quadrature rules to adjust the
accuracy. This volumetric information is passed to
Visit which performs the surface reconstruction
and creates a final mesh.

Conformal Mesh

Space is partitioned into uniform spatial
cells. For each of the nodal points on the grid, the
point is relocated to the nearest surface to
“conform” to the CSG cell. This is done similarly
to how rays are sent into the scene using the ray
tracing method(Figure 4). When multiple CSG
surfaces occupy a cell, this method reverts to the
Mixed-Cell method.

Figure 4: A CSG subtraction generated using the
conformal method with a grid size of
100x100x100.

CONTRIBUTIONS

The more recent additions take a
dramatically different approach to solving the
CSG problem. Rather than focusing on defining a
graphics mesh globally, these methods deal with
each CSG primitive individually to preserve the
local behavior of the mesh.

Adaptive Local Convex Subdivision ALCS(“Local
Catmull-Clark”)

The motivation behind this scheme was to
develop an algorithm that could arbitrarily
triangulate a given convex body. Traditional
Catmull-Clark subdivision is a method for
successively refining a coarse object to obtain a
much smoother surface(Figure 5).

Figure 5: A depiction of traditional Catmull-Clark
ran three times to smooth a cube into a sphere.

This image illustrates how Catmull-Clark
subdivision is a global operation and refines all
faces equally. For the CSG problem, we needed a
notion of local refinement and wanted the ability
to subdivide a series of faces independent of the
adjacent neighbors. This led to a fundamentally
different set of data structures for mesh
representation that made the mesh easy to
locally traverse and update.

Collectively, these data structures have
been referred to as the spoke representation for
a mesh.

Spoke

Vertex Index

Next Spoke Index

Twin Spoke Index

Face Index

Spoke Depth

Figure 6: The spoke data structure.

A spoke can visually be considered as a
directed edge of a graph or a half-edge for a
mesh representation(Figure 7).

Figure 7: A visual representation of how the
spoke data structure is being used to
communicate topology information.

The separation of the mesh data into smaller
data structures is done in an attempt to contrast
the geometric from the topological information
of a mesh. The connectivity and adjacency
information is contained within the face list and
spoke table, while the vertex table contains the
geometric spatial coordinates of all of the
vertices.

Because the goal of this method is to
obtain the closest approximation to a surface, it
does not use most of the averaging steps found in
traditional Catmull-Clark subdivision. Instead
there is a projection step, where upon
subdivision of a face, the centroid is placed on
the surface of the actual surface using a ray
trace, and newly added vertices along the edge
are also projected to the surface in a similar way.
Each face is stored in a priority queue using the
index into the face list and the error metric
associated with that face. Each of the faces is
locally subdivided until an error threshold is
met(Figure 8).

c⃗=
1
n
∑
i=0

n

v⃗ i , where v⃗ i∈V

⃗navg=
1
n
∑
i=0

n

n⃗i , where n⃗i=N (v⃗i)

⃗rmax=max0⩽i⩽n∣∣v⃗ i− c⃗∣∣
⃗p(t)= c⃗+t n̂avg

Solving for t given the surface's implicit
description yields:

f (⃗p (t surf))=0

Error Metric=
∥c⃗+t surf n̂avg∥

∥r⃗max∥

Figure 8: Description of how the error metric is
computed for each face.

In order to preserve the correct
topological information of the mesh, careful steps
have to be placed into the algorithm to handle
the multiple cases that arise upon subdivision of
an individual face. While subdividing a face, each
spoke is traversed and an spoke-subdivision
routine is executed. The spoke-subdivision
algorithm has three different possible cases. We
call a spoke coarse when both its corresponding
face and its twin spoke's face have the same level
of refinement(Figure 9). Similarly, a fine spoke is
one where
the neighboring face has undergone one level of
refinement compared to the current face(Figure
10). A super-fine spoke is one where the the
refinement difference between the two adjacent
faces is greater than one(Figure 11). The general
algorithm for face subdivision
determines one of these three possible cases and
updates the mesh data structures accordingly.

Vertex

Spoke
Next Spoke
Twin Spoke

Face

Depth = n

Depth = n + 1

Figure 9: An image of the coarse neighbor case.

Figure 10: An image of the fine neighbor case.

Figure 11: An image of the super-fine neighbor
case.

BSP tree probing

The intention of this algorithm is to
combine arbitrary closed triangulated meshes
given a boolean operation. BSP(Binary Space
Partitioning) trees offer a very natural way of

dividing space into smaller domains. Instead of
being limited by the constraints of a cartesian
grid, BSP trees allow space to be chopped into
areas that characterize the local orientation of
faces on a mesh(Figure 12).

Figure 12: A depiction of how the BSP tree
partitions space, and how the binary tree
structure is organized.

 Given an arbitrary non-convex triangulated
mesh, upon inserting the triangles into a BSP
tree, particular subtrees correspond to convex
meshes that are composed to make the original
non-convex mesh. This allows us to simplify our
problem of handling the triangulation of non-
convex bodies to one of handling a collection of
convex bodies(Figure 13).

I (X)=Interior(X)

Depth = n

Depth = n

Depth = n

Depth = n + 1

Depth = n

Depth = n + k

AB

A∩B=A inside∪Binside

AND OR
A∪B=Aoutside∪Boutside

SUBTRACT
A−B=Aoutside∪Binside

Aoutside={x : x∈∂ A∧x∉I (B)}

Boutside={x : x∈∂ B∧x∉ I (A)}

A inside={x : x∈∂ A∧x∈ I (B)}

B inside={x : x∈∂ B∧x∈I (A)}

Figure 13: A 2D demonstration of how we
construct the boolean operations using subsets of
the original primitives.

The BSP algorithm begins by traversing
the CSG tree. Whenever it encounters a convex
primitive, it executes a triangulation routine on
the primitive and builds a BSP tree from those
triangles. The ALCS scheme could be used to
generate triangulated quads or specific
triangulation routines for each primitive could be
implemented. When constructing the BSP tree,
three separate cases emerge for inserting a
triangle(Figure 14).

Figure 14: Enumeration of the cases for tree
insertion.

For each node of the tree, a triangle is
tested to see if it is in front or behind of the
current triangle corresponding to the
node(Figure 14). This process is recursively
performed until a triangle can be inserted in front
or behind another node in the tree. An
interesting third case emerges when the inserted
triangle crosses the current node's triangle(Figure
14c). If all of the vertices of the triangle do not lie
on this node's triangle, then we slice the inserted
triangle into three smaller triangles and
recursively insert them into the BSP tree. If
exactly one of the inserted triangle's vertices lies
on the node's triangle, then we instead slice the
inserted triangle into two triangles and
recursively add them to the tree.

Once each tree is constructed, two
trees are taken at a time if a boolean operation is
to be applied on the both of them. Each tree uses
a collection of triangles from the other tree to
perform a probe operation similar to the
insertion. For all of the triangles, the probe
operation queries the tree to assemble a set of
triangles that are inside and outside of the mesh.

n̂

f (v i)>0∀ v i∈T

f (v i)<0∀v i∈T

n̂

a)
b)

∃vi , v j∈T : f (vi) f (v j)<0

n̂

c)

The result is four new sets. From these partitions
of the mesh into components, we can use set
unions to construct the desired mesh to
represent the desired boolean operation.

RESULTS & FUTURE WORK

After applying the BSP probing algorithm
to two triangulated cylinders, the following
results were produced.

Figure 15: CSG operations using BSP method.

With the BSP probing method, one feature worth
noticing is the sharp, crisp edges that are
preserved from the original geometries. This is a
desired property of the final CSG. Unlike previous
methods that Mercury has used, the BSP method
preserves these points where locally the
derivative on the surface is discontinuous.

The BSP probing method has two
noteworthy drawbacks currently, however. It only
works on two triangulated primitives currently.
However, this can easily be extended by
determining an efficient way to decompose

chains of boolean expressions into simpler
expressions involving the inside and outside sets.
Additionally, after the CSG has been triangulated,
there tend to be several unnecessary triangles as
a result of the BSP building step in the algorithm.
On some occasions, the merging of neighboring
triangles might result in the same looking shaded
surface. It is beneficial to consider these cases in
the future and use mesh simplification routines
to reduce the overall polygon count.

ACKNOWLEDGEMENTS

This work was performed under the
auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.

A B

A - B

